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I. Introduction

The problem of coverini :i Av& wit h syi % in i -r polygons hs attracted the interest of

many researchers On-.',7.lKS6.('I ,7. (The such problem is finding the minimum

number of star polygons needed to 'vor a givon polvgon (a star polygon is such that there

exists a point in the polygon from which ill poinTs in the polygon are visible). Covering a

polygon with the minimum number ,f' star polygons (minimum star cover) is equivalent to

the placement of the minimum nuiinmr of' point guards (minimum guard cover) so that

each point inside the polygon is visible to some guard. This problem was shown to be

intractable (NP-hard (G.179!) for polygons with holes in JoRS831. The problem was shown

to remain intractable for simple polygons in [LLS4. A84]. The complexity of finding

minimum guard covers for simple orthogonal polygons remains an open question. Many of

the results on guard covers and the related Art Gallery problem can be found in [O'R87].

Because of the intractability of most minimum guard cover problems, restricted

classes of polygons and different definitions of visibility have been considered

[K86.O'R87,MRS88]. In the standard definition of visibility two points are said to be visi-

ble if the straight line segment joining them does not intersect the exterior of the polygon.

An important class of polygons is that of orthogonal polygons. A polygon is an orthogo-

nal polygon if all its edges are parallel to the major axes. Alternative definitions of visi-
El

bility have been proposed in connection to orthogonal polygons. Two points inside an

orthogonal polygon are said to be s-visible rMRSs8] if they can be joined by an orthogo-

nally convex staircase path that does not intersect the exterior of the polygon. Two points

are said to be r-visible [11,861 if they can be placed inside an orthogonal rectangle that is

A.'



CoMpletely contained in the polygon. The notions of s-visibility and -visIbIlity ,2r,wt v

lead to s-star and r-star polygons.

Polynomial time algorithms for solving restricted versions of the guard -o-ver pi-( 1l,m

in simple orthozonal polygons have been reported in [N86.MS88J. Ieil [IKS$ cio, 'i

0(n-) time algorithm for minimally covering a horizontally convex orthoconal p lvon

with the minimum number of r-star polygons. A faster implementation cif the -ame

approach that runs in optimal O(n) time is reported in [GN881. In [MRSSq]. an ()(0a)

time algorithm for covering an orthogonal polygon that has only three (out of the po.sible.

four) dent orientations with the minimum number of s-star polygons is presented. They

also give an 0(n10 ) time algorithm for the case when the polygon has dents in all four

directions.

A structure that is often associated with polygons and has found many applications in

Computational Geometry is a grid (e.g., the grid induced by the polygon's edges/vertices).

If we think of the grid edges as corridors, the star cover problem in a grid is to find the

minimum number of guards that need to be stationed in the grid so that each point in the

grid is visible to some guard. Finding a minimum guard cover in a three dimensional grid

is NP-hard but a minimum cover for a two dimensional grid can be found in O(n 2 5) time

[N86 (where n is the number of segments in the grid).

In this paper we address the problem of finding minimum star covers under periscope

visibility. Two points are visible under periscope visibility if there is an orthogonal

path with at most one bend connecting them without intersecting the exterior of the

polygon. Generalizing, k-bend visibility allows staircase paths with at most A- 1,(nd6



(periscope visibility is the same as i-,-nd visibility). [f A- can have any ,:lu, it, , i Lh

are restricted to be orthogonally convex, we have s-visibility. In the socxt S, iv.Ti xe (<w

that finding a minimum periscope guard cover for a three ,imeion l ,ir is NP-Lird.

Also. finding minimum k-bend guard covers and s-guard covers are NP-h:ird prtilemus. In

section III we present an O(n 3 ) time algorithm for finding the mininm nflr )im r ,' peri-

scope guards needed to cover a simple 2-d grid (simple grids are c'los,.y r'Itt') rth t -

nal polygons). In section [V we adapt this result to the problem of finding th, minirmurn

number of periscope guards needed to cover a simple orthogonal polygon :md obtain 0(013 )

algorithms for finding minimum periscope guard covers for a class of orthogonal polygons

that includes monotone and orthogonally convex polygons.

11. Periscope Guard Covers for 3-d Grids.

The complete two-dimensional grid of size n is the graph with vertex set ' =

{1,2.... n} X {1,2,...,n} and edge zt E = {{(i,j), (k.m)} i-k I + I J-r I= }. The com-

plete 3-d grid is defined similarly. A (partial) grid is any subgraph of the complete grid.

In a geometric setting we think of the grid edges as corridors and the grid vertices as inter-

sections of corridors. We also assume that the grid edges are parallel to the major axes.

Finding a minimum set of guards needed to cover (under normal visibility) a 3-d grid is

NP-hard [N86]. The reduction is from the vertex cover problem for graphs with maximum

degree three [GJ79,O'R87]. We use a similar approach to show that the minimum cover

problems for periscope guards, k-bend guards and s-guards are NP-hard for 3-d gri,;.

Vertex Cover:
Instance: Graph G = (VE) with all vertices having degree three or less. positive

integer k < IV I.



Question: Is there a vertex ,' vr (,f Aze < k" for G " (I.e.. a set of vertices such thatach ed ( ill iG In eimit on at least one vertex in the set).

Periscope Guard Cover for 3-d Grid:
Instance: A three ,linienzinon:l _,rld with n segments, integer m.
Question: Is there a positioii cf in periscope guards in the grid so that every point

,n the r , i )i -i les, t one guard?

(;iven a, istance of vertex ccver we construct an instance of guard cover as follows.

Index the vertices of' G arbitrarily '*roim I to Iii . We construct a three dimensional grid Q

such that Q can be covered by lesr Than or equal to m guards (m to be determined later)

if and only if there is a vertex cover with at most k vertices in G. We start with a full 3-d

grid of size SlV and assign the vertices of G to grid vertices so that the vertex v, is

assigned to the grid vertex (6i. 6i. 6i). An edge (vvy) of G is represented by a grid path

connecting the corresponding grid points. Grid paths for the edges need to be disjoint,

consist of -tx + 2 segments (for some integer x > 1) and the three paths corresponding to

the three edges incident on a vertex of G need to be orthogonal to each other in the

immediate neighborhood of the grid vertex where they meet. Once a path that satisfies

these requirements is constructed for each edge, all grid edges and vertices that are not

used in these paths are removed. The resulting grid is Q. The two types of grid paths

shown in Figure 1 are sufficient to make all the connections. We refer to them as short

(six segments) and long (fourteen segments) paths respectively. Short paths are used as

much as possible: long paths are needed to bend around a previous connection so that all

connections to a grid vertex that represents one of the original graph vertices will occupy a

distinct direction in the immediate vicinity of the vertex.



Theorem I: There is a vertex ,over of size A: in G' if and Onrly it , i . liie.

to the corresponding grid cover problem of size c + Z s, where 5,= 1 or 3 lepei,

xiether L e Ie corresponds to a short or a long path. respectively.

Proof: Assume there is a vertex cover of size k. Position k guards it I vri,-

hat oc rrfpoiid o he vertices in the vertex cover. Then position the remainina ,cr,

,.very fo'lrth correr in the six or fourteen bend paths (Figure 1) starting 'rn the siti.

, the guards corresponding to the vertex cover (if both ends of a path correspond to ve.-

tices in the vertex cover, arbitrarily select one of them). One additional guard is needed in,

every short path and three additional guards are needed in every long path.

Conversely. assume that a solution of size k + Zsi for the grid cover problem exists.

We can obtain a solution to the vertex cover problem from the solution of the grid cover

problem as follows. Note that at least one guard per short path and three guards per long

path are needed in their interior to cover them (in addition to guards at the endpoints of

paths). If we spread these guards as shown in Figure 1, the remaining k guards can be

shifted to the grid vertices corresponding to the vertices of G without disturbing the cover.

These vertices must constitute a vertex cover in G. If not, there must be an edge in G

such that the corresponding short (long) grid path is guarded by just one (three) guard

which is impossible since the path consists of six (fourteen) segments. Q.E.D.

Corollary 1: Finding the minimum number of periscope guards needed to cover a

:3-1 grid is NP-hard.

Consider now k-bend guards. We can use the same approach but use grid patls con-

sisting of 2(k+l)x + k+1 (x > 1) segments for each edge in G. For s-guards. th,.re i- 11,
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upper bound on the size cf the stairce, encunecti tg two points (so that thev arc visible).

However, the staircase is restricted to be orthogonall convex. \Ve can use this require-

ment to construct grid paths for the edges in (, that will consist of-t x + 2 orthogonally

convex staircases connected so that no sequence of two or more staircases is orthogonally

convex. Then the same arguments as in Theorem 1 can be utsed to show that the

minimum cover problem for s-guards in 3-d grids is NP-hard.

Corollary 2: The minimum cover problems for k-bend guards and s-guards in 3-d

grids are NP-hard.

II. Minimum Periscope Guard Covers for Simple 2-D Grids.

In this section we consider the periscope guard cover problem for a class of 2-d grids

(simple grids) which can be used to model the periscope guard problem in simple orthogo-

nal polygons.

A grid segment is any maximal straight line sequence of successive grid edges. A

grid is called a simple grid if all the endpoints of its segments lie on the outer face of the

planar subdivision formed by the grid (as in Figure 2a); otherwise, the grid is called a gen-

eral grid (a general grid may have holes as in Figure 2b). The crossing set C of a seg-

ment si is the set of segments that intersect si. A segment si is said to be dominated by

a segment s. if C1 is a subset of Co. In Figure 2a, segments c and d are dominated by seg-

ment e. A segment s is called a cross if there exists a segment st such that the crossing

set of s, contains only s. A segment is called a pseudo cross if it becomes a cross by

removing zero or more segments dominated by it (note that every cross is also a pseudo



'ross)..\ i' ,t is ,lle 1 prime if it is neither a pseudo cross nor a doio1i nated s

Two ,!i sott ir' equivalent if their crossing sets are the same. In figure 2a. segments

1. I. 5 :1,-. 'O,>,s. s,,1nwnt C' is a pseudo cross, segment 3 is prime and segments b. g are

equivalent. Note !t : periscope guard that can see a segment s can see all segments

equivalent l) -. t1,reore we keel) only one segment from each set of equivalent -_eg-

inents.

The import:Inc(' (,f domination is illustrated in Figure 2a. A guard located on a dom-

inated segment can he moved to the dominating segment and still see all segments visible

from its original position (as well as some additional ones). For example. a guard at point

x can be moved to point y in Figure 2a and still see all the segments visible from x. This

indicates that certain segments are more important than others. We capture this idea by

defining a reduced grid. Let G be a simple grid. Mark all segments that are dominated in

G. The grid obtained by removing all marked segments is called the reduced grid. Fig-

ure 3 shows a grid with tie dominated segments marked and the reduced grid obtained by

removing them.

Lernma 1: The reduced grid of any simple and connected grid is simple and con-

nected.

Proof: All end points of the original grid are in the outer face. After removing dom-

inated segments. all the remaining end points still lie in the outer face and the reduced grid

is simple. All segments connected by a dominated segment are also connected by the dom-

inating segment. Therefore removal of a dominated segment does not disconnect the grid

and the reduced grid is connected. Q.E.D.



'WO points on a grid are visible under periscope visibility 1 i hy 11 -.. tI i .

tew l or lie segments on which they lie intersect. Points lyin ,n the -:ji, t,,, .

,etined to be directly visible while points on intersecting s, ,nIr, ,:,iI

indirectly visible. Given a simple grid we are interested in hitiirt: hLe t:ii 'n

nulnicer of periscope guards that need to be placed in the grid so) that ':Ich I: int if; 1!w

,.rid is visible to at least one guard. A set of guards that can see t \VhOl eil js ,hi.i

guard cover for the grid.

Our approach for finding a minimum guard cover for a simple zrid 'is to 1,ientify

places where any optimum solution should have a guard, place a guard. rfemove :1 portion

of the grid and repeat until all of the grid is visible to a guard. Let Rt, R' be two guard

covers for a simple grid. We say that a guard gi in R is equivalent to a guard g, in R' if

the two guards see exactly the same set of grid segments. A guard gi covers a guard g, if

the set of segments visible to gi contains the set of segments visible to I,.. To *t-in :1

minimum guard cover we locate each guard so that any minimum guard cover 'ill contain

a guard equivalent to it or covered by it.

Lemma 2: There exists an optimum guard cover in which all guards are located at

grid vertices on segments that are not dominated.

Proof: We can adjust any guard cover to obtain one that has an equal (or smaller,

number of guards and satisfies the conditions. If guard g, is located in the interior of a

grid edge, a guard g, located at either endpoint of that edge covers g, and we can replace

g, with gj in the guard cover without increasing its size. Similarly. if g, is on a dominated

segment. there is a guard gj on a parallel dominating segment (that is not itself



*,moin' tedi that covers gi. Q.E.D.

Lemma 3: There is an optimum guard cover in which ,vorv i-,io ,'I.

Zuar'I agong it.

Proof: From the definition of a pseudo cross we have that threxist,

that intersects only the pseudo cross or the pseudo cross and segments doriminato v it.

To see this segment any solution must have a guard either along it or on one ,tf . - , -

inents that intersect it. In the first case we move the guard to the intvrs ction ,I' iA ,

ment with the pseudo cross. In the second case the guard is on a dominated segment: it*

we move the guard to the pseudo cross (dominating segment), the guard still sees :dl oe<-

ments seen before (and some additional ones). Q.E.D.

Let C = .. .... Sk} be the crossing set of a segment s in the reduced grid. The

crossing set C is said to form a group if there exists a segment s' C C such that s' is dom-

inated by all segments in C. Then s' is called a junior segment in C. In Figure 3. the

,rossing set for segment d forms a group and segment 6 is the junior segment in this

group. Another group is formed by the crossing set for segment 3 with segment i or seg-

ment f as the junior segment (junior segments are not unique).

Lemma 4: Let s, (respectively sr) be the left most (right most) segment in the cross-

ing set of a horizontal segment s in the reduced grid. Let s' be a segment of minimum

rank (i.e.. smallest crossing set) in the crossing set of s. Let st (sb) be the top most (bottom

most) segment in the crossing set of s'. Then the crossing set of s forms a group if and

only if segments si,sr,st,sb intersect to form a rectangle (as in Figure 4). A similar property

holds for any vertical segment. Note that the rectangle may be degenerate. i.e.. it may he
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a segment or a p(, ili.

Proof: A *JlniCr seimnent i1 a ,. rctup muist have the smallest crossing set. Since t is

dominated by all ( ther '11me 1ts ii The cro ,sim- set of .5 we must have that st . . (and !ill

other segments initcrzert ')" must intersect :ll segments in the crosing set of . thiLs

s,. s,. s6 intersect to form a r-ertanale. The rectangle degenerates to a segment when s,.

sb are the same and to a poifnt when the crossinq set of s contains only 5'. Q.E.D.

Lemma 5: The crossing set of a prime segment .s in the reduced grid can not form a

group.

Proof: A&sume to the contrary that the crossing set of s forms a group. Let the

junior segment in the crossing set of s be s'. If s' intersects only s, s cannot be prime (it

will be a pseudo cross), a contradiction. If s' intersects s and some other segment st, the

crossing set of s1 must contain the crossing set of s (otherwise s' will not be the junior seg-

ment). But then s, will dominate s implying that s is not a prime segment, a contradic-

tion. Q.E.D.

Lemma 6: Let G, be the reduced grid of a simple grid G. Let s be a pseudo cross

segment in Gr such that its crossing set C = {si, s, --- , S} forms a group. Let s, E C be

a junior segment in the group. Then there exists an optimum guard cover for G that con-

tains a guard equivalent to a guard placed at the intersection of s and si .

Proof. Let r be the minimum number of guards needed to cover the grid and let Q

be a placement of r guards that covers the grid. \We prove the lemma by showing that Q

can be rearranged so that a guard is placed at the intersection of s and s. and the resulting



<,I All thle c.rid. lir-st nlote t hat S, m~ust be a psewudo (l nti i

lon nteI s~m nisdo not appear in C, and prime segments can not

I N nsih'r he cros'siiig' -et of .~

Case 1: The, ' ss tet of s, contains only s). Sin ce s, is a psenldc -ros -.

Ik- it. \\', 'ain move this guard to the intersection of .5 and i

wi\% ith t i the ooveraLe.

Case 2: ThPe crossing set of s, contains more than one segment). S;ince 1lth il'

:1170e pszeitoross 0 must have -it least one gruard along each of themi or on the

nicntsz (hotin:Ledl by them. If aguard is on a dominated segment then we can sa:feR I0\

it to thle pseudo cross that dominates it. If a guard is already at the point of intersection

Of ,; and ,;, we are d]one. Otherwise, let guards gl, g.2 be at the intersection of s and . ". ,

and s'. respectively. Now observe that g, and 92 must be at opposite corners of the rectan-

nle formed by the segments s. si, s' and s" (Figure 5b). If such a rectangle does not exist

then s, can not be a junior segment (contradicting Lemma 4). We can move g, and g, to

the other two corners of the rectangle without affecting the set of segments v-isible to them

(collective lv). Q.E.D.

From G, we can construct two trees, the horizontal segment tree Th Vh, E~Iand

the v-ertical segment tree T, = ( V~, E,). Th is constructed as follows (the construction for

T,', is similar): If two or more horizontal grid segments are equivalent then we treat themn

:1 ingle horizontal segment. The set of vertices V~ is, V' ~ r is a lvwizonit:1 -,Z

Inen1t in CR ). Two vertices vl,v., are connected by an edge (ri. t,.) if the correspon liine



horizontal segments are neighbors, i.e.. there is :a vertali,' .se ument that inTerseCts i,

them without intersecting any other horizontalsec1ents Iwtween them. Note that T,. T,

:ire trees because Gr is a simple grid.

\Ve use Th (or T,,) to find a segment whose crossing set forms a group. We moiidif

Ta s follows: A branching node in Th is a node that has ,e ree three or higher. .\ leaf

of Th may be connected to the nearest branching node directly or through a path that

visits vertices of degree two. If. along such a path. the father f and grandfather g of a

leaf segment s are such that q dominates f and f dominates s we make both f and s

children of q and repeat this process as needed. The resulting tree is the modified hor-

izontal segment tree Thin. Figure 6b shows Th for the reduced grid of Figure 6a and

Figure 6c shows the modified tree Thm.

Lemma 7: The red,,ced grid G, of any simple grid G contains a segment whose

crossing set forms a group.

Proof: Every leaf segment of Th (or T,,) is a pseudo cross. Consider a leaf I in Thm.

If I is neither dominated nor equivalent to another segment there must be a segment s

such that s intersects with I but not with the father of 1. This means that the crossing set

of I forms a group with s as the junior segment. If I is not dominated but is equivalent to

another segment, again there is a segment s that intersects I and segments equivalent to it

only. Then I forms a group with s as the junior segment.

If all the leaves in Thin are dominated, let T' be the tree obtained by removing the

leaf nodes of Thim. Consider now a node f in Thm that appears as a leaf in T'. Node f in

Th,, may have many leaves as its sons. A leaf segment s corresponding to a son of f is
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calle(I an upper leaf segment ( reslw ,.I,,,,Iv lower leaf segment) if the y-coordinate (,I

s is .reater (lessi than tie y-oofrdinate f w rae le Portions of the upper leat'

segments of f that lie on thc lille" :' plana.t r 1hbdivision ildilced by the grid

(disregarding \vertices of deree .me we %%ill t :M .lanhattan sky line pattern as shown in

Figure 7b. Similarly, an upside ,town Mnla:tt:in >ky line will be formed if the lower leaf

segments of f are traced. (Observe iht if" tlhey A) not form a lanhattan sky line. then

some son or f will not be ,iorniiated I , . :i contradiction). Now the leaf segment

corresponding to the left most or right most pe:tk or the sky line is a pseudo cross and its

crossing set forms a group. Q.E.D.

Ve are now ready to describe the algorithm for finding a minimum periscope guard

cover for a simple 2-d grid. The dominated segments in the given grid G are marked and

a reduced grid Gr is obtained from C by removing dominated segments. Lemma 7 guaran-

tees that at least one segment of Gr is such that its crossing set forms a group. Once such

a segment is found, the location of a guard q that corresponds to an optimum solution is

determined by using Lemma 6 and visible segments in G are marked. We could remove

from G the segments that are visible to the current guard set and repeat the process on

the resulting smaller grid until the grid becomes empty. However a problem arises when

we remove a visible segment that niav be used hv a guard (positioned later) to see some

other segments indirectly. For example. when segments visible to g in Figure Sa are

removed, the grid shown in Figure 8b results. Two additional guards are needed for a total

of three whereis two guards are enough to cover the original grid. The problem arises due

to the removal of segments that are indirectly visible to the current guard set but may
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have :i .v'i:ir, (positioned later) along them. There are cases when it is sale to ,rf .

indirectly visible segments. The following observations list the kinds of visible segineit>

that .:m Ihe safely removed.

Lemma 8: It is safe to remove a segment s from the grid when: (a) s is directly visi-

ble (to a guard in the current guard set), (b) s is indirectly visible to a guard placed on secg-

ment ;' and s is dominated by s'. (c) s is visible and all segments in the crossing set of s

are visible. (d) s is visible and intersects with only one segment.

The algorithm therefore removes from G those segments that are visible and are safe

to remove (making use of the above observations). Note that the resulting grid G' may

contain Some segments that may be indirectly visible. When a grid has some segments

marked visible then the definition of domination has to be adjusted accordingly. We say

that segment s, dominates segment s 2 if the set of invisible segments in C', is a subset of

the set of invisible segments in C 1. In Figure 9a, segment s, is dominated by segment So.

Construct a reduced grid G', from G' by removing dominated segments. Now observe

that cross (or pseudo cross) segments are of two kinds as shown in figure 10 (dotted seg-

ments are visible to the current guard set; note that segment s 6 is a cross but segment S4 is

not). Both kinds of crosses always need a guard along them. From this it follows that

Lemmas 6, 7 hold even when the reduced grid contains some visible segments.

The algorithm therefore finds a segment that forms a group in the reduced grid of G'

and places the next guard using Lemma 6. This process is repeated until the remaining

grid is fully visible. A formal description of the algorithm is given below:



Algorithm GRID-COVER:

step 1: Find all dominated segments in tie simple grid G' and reim,,V t,.w. 1 ,t
the reduced grid.

,ep'2: Find a segment s in G, such that its crossing set forms a I.,,
junior segment in the crossing set of s.

step3: Place a guard at the intersection of s and s' and remove all sejamelts h:it :li' >a1f

to remove (Lemma S) from the reduced grid.

step I: Repeat stepi through step3 until all segments of the grid are visible to a auiard.

The execution of the above algorithm is illustrated by an example in Figure 11. -

sider the simple 2-d grid shown in Figure Ila. All dominated segments ire marked by V".

Segment 2 forms a group and a guard g, is placed at the point of intersection of a and 2.

The segments that are visible to g1 are drawn in grey. Visible segments a.b.I and 2 are

safe to remove. In the grid obtained by removing these segments the algorithm finds that it

is safe to remove visible segments 3,4,5,7 and 8 (each of them intersects with only one seg-

ment). The location of the next four guards is found similarly (Figure 1 Ic). Note that seg-

ment k is not safe to remove (it connects invisible segments 15 and 16). When the guard g8

is placed all the grid segments are visible and the algorithm terminates. Figure 11g shows

the final guard placement.

Theorem 2: A minimum periscope guard cover for a simple grid can be found in

0(n 3 ) time.

Proof: We can construct the grid graph G formed by the intersection of 6rid seg-

ments in O(n2) time using the arrangement of lines algorithm in [CGLS4 or EOSS3]. This

graph is represented by using the doubly connected edge list data structure (as described in

[GS83]) to facilitate traversal of the faces of the graph. We can find the crossing set of one

segment in 0(n) time by simply traversing the graph along the segment. Then the crossing



I f)

s ,1 a) sZmients can be determined in time 0(,0i). A segment s dominates :a s ,'111

he I%,'in .,,t o s ontains the crossing set of s'. Note that if a segment is 1,ni-

I then it is ,loninatld by one of its neighbors. Therefore dominated segments ,':an Ie

identified by o mparinu the crossing sets of neighboring pairs in 0(n2) time. \Ve ,an forni

i, o'luc, rahii G. from G by removing the dominated segments in 0(n2-) iime hv

ui r': ,.Ii the traph on faces containing the segments, deleting the dominated segments

.ini :pdlatinT the doubly connected edge list data structure. Whether or not the crossing

,:t ,'a segment s in Gr forms a group can be determined by using Lemma 4 in O(n

1m1. I'here fore we can find in 0(n 2 ) time a segment whose crossing set form a group (by

applying Lemma 4 at most 0(n) times). Visible segments that are safe to remove can be

removed by traversing the graph in O(n 2) time. Since the minimum guard cover has size

at most 0(n), all of the above steps will be repeated at most 0(n) times and the overall

time complexity of algorithm GRID COVER is 0(n 3 ). Q.E.D.

The algorithm we have described works on simple grids. It is interesting to consider

what happens in general 2-d grids. It is easy to construct 2-d grids in which no segment

forms a group (e.g., consider the grid in Figure 12). If all the segments in the reduced grid

are pseudo crosses, we can find a minimum guard cover using the matching approach in

[NSG1 (since each pseudo-cross must have a guard along it). However, the reduced grid

may also contain prime segments and it is not clear that the approach we use for simple

grids can be extended to general grids.
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IV. Covering Orthogonal Polygons with Periscope Guards

In This ction we consider the problem of finding the miniIlImm mm r ,,f "-

.,:rs needekd to cover an orthogonal polygon. We show that the p,), i

1, converted into an appropriate grid cover problem for a class of 'w Io , n:l.

(ionsi ir the subdivision formed by extending the edges of an ortlu >i:iI ,, .

Its Interior. The polygon now consists of rows and columns of rectangles. \With();.

,enerality. we assume that no two polygon edges that face in opposite directions: -

<er l wif sih a pair exists, we can shift one of the edges slightly s() tr,; . cre:,t.

row/column of rectangles where a degenerate row/column was before). E:ch row,.',+!11!

consists of a number of sequences of rectangles separated by portions of' the exterior o .

polygon. We construct a grid G to represent an orthogonal polygon P hy :LssciatiIL,

grid segment with each sequence of rectangles. Then the internal grid vertices rppresent

individual rectangles in the polygon. Figure 13a shows an orthogonal polygon and Figure

13b shows the grid corresponding to it.

Lemma 9: The grid G is a simple and connected grid.

Lemma 10: Let X be a guard cover for the grid G. Then X is a guard cover for the

underlying polygon P.

Proof: Suppose that there is a point in P that is not visible to any guard in X. (on-

sider the rectangle that contains this point. There must be two grid segments that go

through this rectangle and both of them must be visible to a guard in X. Then any zuard

that sees one of these edges in G sees all points in the rectangle in P. Q.E.D.



The titi,'liyv with the !gzrid G is that the reverse of Lemma S is not Irue. I.e.. :I _,1:irad

I*),'-Irhe ,Iiyon does not -always correspond to a guard cover in the gri t. lFr xarn-

lih j
. ,konsidier T1 1,)olyon of lFigure I la and the corresponding grid (Figure 14b). Two

guards ar ,  t ,,cver the grid but one guard is sufficient to cover the potygon. The

problern here suits from the two rectangles at the top of the polygon. Note that the

whole :'ara il thcse rertangles is indirectly visible to a guard located at point x but a dis-

tinct guard for e'ach rectangle is needed in the grid (the two horizontal segments in the top

rectanules are n.et visible to any single guard). Suppose that we place a grid guard at point

x in both the polygon and the grid. Then the grid segment corresponding to the left side

of the polygon is indirectly visible to the guard. Consider then the infinite sequence of

vertical segments obtained by sliding segment a along the boundary of P so that it sweeps

through the top rectangle. All these segments are indirectly visible from point x: also, all

the points in the horizontal segment b (that is not visible to the grid guard at x) are

included in this sweep. That is, the segment b need not be included in the grid because

any guard that sees the left edge will automatically cover b as well. In effect, the horizon-

tal segment 6 can be replaced by its intersection with the sweeping segment without

affecting Lemma 10.

We say that a grid segment is a swept segment if there is a grid segment that

intersects it and it can be moved through the entire span of the swept segment without

intersecting the exterior of the polygon and while both its ends remain in contact with the

boundary of the polygon. This definition can be applied recursively by removing swept

rectangles from P each time. All but the bottom horizontal segment in Figure l-d are



%we pt rec i'siv,'ly . : ,ptIacinig ,orresponding segments in the grid %%i!th ,i " Ir , (1,i-

w it h the sweeIp) n' segment results in the grids of Figure lc.e. Not,. 1:t ! -, i .

.m cOr e'ci (I' the eritL. \\e call the grid resulting from sweeping il,. swept grid ,

!')r tie ()rtihogoriWl poi).j%-oI1.

There is ,me more problem with both grids 67 and G.,. It arises %%lin 11, pI v,

,ontains coriners like the one shown in Figure 15. There are two orthogonal grI s,.nmm-

that enter the ,orner and a guard placed on either one of them can see the whole - viii-r.

This is similar to what happens when we have swept segments but here we have a choiw'

'A' two wavs to -weep. The problem is that it is not clear locally which of the two choi,,

is best. We refer to this type of corner as a swept corner. Note that choosing to sweep

with a vertical (respectively horizontal) segment is equivalent to adding a vertical (horizon-

tal) notch into the corner so that the notch is not visible from the vertical (horizontal) etg,

that enters the corner. Also, note that addition of such a notch eliminates one of the

choices. i.e.. the grid cover corresponds to a polygon cover.

Lemma g: A grid cover in the grid G obtained from a simple polygon without swept

corners after replacing swept segments with points is equivalent to a polygon guard cover.

Proof: A guard cover for the grid is clearly a guard cover for the polygon. Given a

guard cover for the polygon, we first obtain an equivalent cover in which all guards are in

the interior of some rectangle. To do this, we need to shift guards that lie at the bhorder

between two or more rectangles (i.e., they are co-linear with some polygon edlge(sL,

without affecting their visibility. If the guard is at the border between two rectanles. %,

note that all the polygon edges that are co-linear with this border are facing in tif -amw



I'i4o ()I* t I~~ I I0! 0 t ! 1i it

,tirtion lovs not affect the visibilitv ,f' the guard. Guards that lie at the (point) I order

lbtw,,, ii ')r four r:ipt:ii-l :ii' : :i !-,. -iit:irIy.

Prolm the polygon gviarl eover %%iih "al ziards in the interior of rectangles. we obtain

:n ct 11ivalent grid cover 1'v -hit'i n -h guard to the nearest grid vertex (i.e.. the intersec-

tIon of the ,rid ements that intersict Ihe rectangle containing the guard). Suppose that

the resuling grid guard set loes not cover the grid. Then there is a segment in G that is

not visible to any of the guards. That means than none of the rectangles intersected by

this segment and none of the rectangles intersected by segments in its crossing set con-

tained a guard in the original polygon. But then the set of polygon guards did not cover

the polygon, a contradiction. Q.E.D.

Algorithm POLYGON-COVER:

step 1 Construct G, the grid of the polygon and remove swept segments from it.

step2 Find a leaf segment s in the reduced grid of G such that s is a pseudo cross and
the crossing set of s forms a group. Let s' denote a junior segment in the crossing
set of s.

step3 Place a guard g at the point of intersection of s and s' and remove all segments
that are either directly visible to g or are swept by a segment directly visible to g.
Let G the remaining grid.

step4 If GOnull goto step2.

Theorem 3: A minimum periscope guard cover for a simple orthogonal polygon

with a fixed number of swept corners can be constructed in 0(n 3 ).

Proof: Each corner represents two choices. Making the choice is equivalent to

removing the corner. tAs long as the number of corners is fixed, there are 0(1) possible

choices to consider. For each choice we can apply the algorithm of the previous section to
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I :1 11 11 X. lii we seldect tIII,- hest (dtes r I-l !1l \tVS 00

],,:1:1. opf~itl l n ; .:t , .w ,. Q .E .D .

Corollary 2: \V a 1ihni mi nm mm polygon covers in 07(n 3 ) for si m pie (,rti.omna ly

' ma:c,n:tone polygons nnd orthogonal spiral poiy;ngi.

V. Concluding Remarks:

... pr , esentd Ofhmn for finding optimum periscope guard covers for simple

rl0 :m ortho onal ol,"ons with a constant number of corners. There are niany

interesting open problms. These include the periscope cover problem for general 2-d

grids, the k-bend zuard ('over problem for grids and orthogonal polygons. Our motivation

for considering periscope guards is to help determine the complexity of the guard cover

problem for orthogonal polygons which remains a well known open problem.
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Figure 1: Short (six segment) and long (14 segment) grid paths.
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Figure 2: Simple Grids and Grids with Holes.
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Figure 6. Construction of" the horizontal segment tree.

2

3



(a)

___' L ih most p<,ak
left most peakI-

Ik,

(b)

Figure 7. rormation of Manhiattan skyline.
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Figure . It is not safe to remove visible segments from grid.
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Figure 9. Definition of domination when some segments are visible.

Figure 10. Two kinds of crosses.
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Figure 11. Example showing the execution of algorithm GRID-Cox'ER.
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Figure I I. Continued.
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Figure 11. Continued.
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II~ure P2. A general grid where no crossing set forms a group.
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Fi.~irP 13. The simple grid of an orthogonal polygon.
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Figure 1H. Swept segments and the 5xwept --rid G'.



Figure 15. A swept corner in a polygon.


